Count Pairs Of Nodes

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution:
    def countPairs(self, n: int, edges: List[List[int]], queries: List[int]) -> List[int]:
        node_degree = [0] * (n + 1)
        result = [0] * len(queries)
        shared_edges = Counter((min(node1, node2), max(node1, node2)) for node1, node2 in edges)
        for node1, node2 in edges:
            node_degree[node1] += 1
            node_degree[node2] += 1
        sorted_count = sorted(node_degree)
        for query_index, query_value in enumerate(queries):
            i, j = 1, n 
            while i < j:
                if query_value < sorted_count[i] + sorted_count[j]:
                    result[query_index] += j - i
                    j -= 1
                else:
                    i += 1
            for (node1, node2), shared_count in shared_edges.items():
                if query_value < node_degree[node1] + node_degree[node2] and query_value + shared_count >= node_degree[node1] + node_degree[node2]:
                    result[query_index] -= 1
        return result

10 Prerequisite LeetCode Problems

“1782. Count Pairs Of Nodes” requires understanding of graph theory, adjacency matrix, and binary search concepts. Here are some problems to build up the necessary understanding:

  1. 200. Number of Islands
  2. 207. Course Schedule
  3. 417. Pacific Atlantic Water Flow
  4. 332. Reconstruct Itinerary
  5. 743. Network Delay Time
  6. 994. Rotting Oranges
  7. 704. Binary Search
  8. 34. Find First and Last Position of Element in Sorted Array
  9. 162. Find Peak Element
  10. 349. Intersection of Two Arrays

You will understand graph theory, adjacency matrix, and binary search better and also practice these concepts which are needed for solving “1782. Count Pairs Of Nodes”.

Clarification Questions

What are the clarification questions we can ask about this problem?

Identifying Problem Isomorphism

The problem “Count Pairs Of Nodes” can be mapped to the problem “Friend Circles”.

Reasoning:

Both problems are dealing with graph theory. In “Count Pairs Of Nodes”, you have to find pairs of nodes that satisfy certain criteria about edge counts. In “Friend Circles”, you are given a graph (represented as a matrix), and asked to find how many separate groups (or “circles”) exist.

The problems are approximately isomorphic in the sense that they both require an understanding of graph traversal and group identification within the graph.

“Friend Circles” is simpler because it only asks for the number of separate groups, while “Count Pairs Of Nodes” requires finding specific pairs that meet certain conditions, which adds an extra layer of complexity to the problem.

Problem Boundary

How to establish the boundary of this problem?

Problem Classification

Problem Statement: Analyze the provided problem statement. Categorize it based on its domain, ignoring ‘How’ it might be solved. Identify and list out the ‘What’ components. Based on these, further classify the problem. Explain your categorizations.

Distilling the Problem to Its Core Elements

In order to have me distill a problem to its core, you could ask questions that prompt for a deeper analysis of the problem, understanding of the underlying concepts, and simplification of the problem’s essence. Here are some examples of such prompts:

  1. Can you identify the fundamental concept or principle this problem is based upon? Please explain.
  2. What is the simplest way you would describe this problem to someone unfamiliar with the subject?
  3. What is the core problem we are trying to solve? Can we simplify the problem statement?
  4. Can you break down the problem into its key components?
  5. What is the minimal set of operations we need to perform to solve this problem?

These prompts guide the discussion towards simplifying the problem, stripping it down to its essential elements, and understanding the core problem to be solved.

Visual Model of the Problem

How to visualize the problem statement for this problem?

Problem Restatement

Could you start by paraphrasing the problem statement in your own words? Try to distill the problem into its essential elements and make sure to clarify the requirements and constraints. This exercise should aid in understanding the problem better and aligning our thought process before jumping into solving it.

Abstract Representation of the Problem

Could you help me formulate an abstract representation of this problem?

Given this problem, how can we describe it in an abstract way that emphasizes the structure and key elements, without the specific real-world details?

Terminology

Are there any specialized terms, jargon, or technical concepts that are crucial to understanding this problem or solution? Could you define them and explain their role within the context of this problem?

Problem Simplification and Explanation

Could you please break down this problem into simpler terms? What are the key concepts involved and how do they interact? Can you also provide a metaphor or analogy to help me understand the problem better?

Constraints

Given the problem statement and the constraints provided, identify specific characteristics or conditions that can be exploited to our advantage in finding an efficient solution. Look for patterns or specific numerical ranges that could be useful in manipulating or interpreting the data.

What are the key insights from analyzing the constraints?

Case Analysis

Could you please provide additional examples or test cases that cover a wider range of the input space, including edge and boundary conditions? In doing so, could you also analyze each example to highlight different aspects of the problem, key constraints and potential pitfalls, as well as the reasoning behind the expected output for each case? This should help in generating key insights about the problem and ensuring the solution is robust and handles all possible scenarios.

Provide names by categorizing these cases

What are the key insights from analyzing the different cases?

Identification of Applicable Theoretical Concepts

Can you identify any mathematical or algorithmic concepts or properties that can be applied to simplify the problem or make it more manageable? Think about the nature of the operations or manipulations required by the problem statement. Are there existing theories, metrics, or methodologies in mathematics, computer science, or related fields that can be applied to calculate, measure, or perform these operations more effectively or efficiently?

Simple Explanation

To explain a problem in simple, non-technical language:

  1. Can you explain [problem] in simple terms or like you would explain to a non-technical person?
  2. Imagine you’re explaining [problem] to someone without a background in programming. How would you describe it?
  3. If you had to explain [problem] to a child or someone who doesn’t know anything about coding, how would you do it?
  4. In layman’s terms, how would you explain the concept of [problem]?
  5. Could you provide a metaphor or everyday example to explain the idea of [problem]?

These prompts encourage an explanation that avoids jargon or assumes minimal technical knowledge, making the concept more accessible to a broader audience.

Problem Breakdown and Solution Methodology

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Inference of Problem-Solving Approach from the Problem Statement

Can you identify the key terms or concepts in this problem and explain how they inform your approach to solving it? Please list each keyword and how it guides you towards using a specific strategy or method.

How did you infer from the problem statement that this problem can be solved using ?

Stepwise Refinement

  1. Could you please provide a stepwise refinement of our approach to solving this problem?

  2. How can we take the high-level solution approach and distill it into more granular, actionable steps?

  3. Could you identify any parts of the problem that can be solved independently?

  4. Are there any repeatable patterns within our solution?

Solution Approach and Analysis

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Identify Invariant

What is the invariant in this problem?

Identify Loop Invariant

What is the loop invariant in this problem?

Thought Process

Can you explain the basic thought process and steps involved in solving this type of problem?

Explain the thought process by thinking step by step to solve this problem from the problem statement and code the final solution. Write code in Python3. What are the cues in the problem statement? What direction does it suggest in the approach to the problem? Generate insights about the problem statement.

Establishing Preconditions and Postconditions

  1. Problem Name:

    • What is the problem that you are trying to solve?
  2. Method Name:

    • What is the name of the method/function that you are using to solve this problem?
  3. Parameters:

    • What are the inputs to the method?
    • What types are these parameters?
    • What do these parameters represent in the context of the problem?
  4. Preconditions:

    • Before this method is called, what must be true about the state of the program or the values of the parameters?
    • Are there any constraints on the input parameters?
    • Is there a specific state that the program or some part of it must be in?
  5. Method Functionality:

    • What is this method expected to do?
    • How does it interact with the inputs and the current state of the program?
  6. Postconditions:

    • After the method has been called and has returned, what is now true about the state of the program or the values of the parameters?
    • What does the return value represent or indicate?
    • What side effects, if any, does the method have?
  7. Error Handling:

    • How does the method respond if the preconditions are not met?
    • Does it throw an exception, return a special value, or do something else?

By answering these questions for each method in your program, you can ensure that you have a clear understanding of what each part of your code is doing and how it should behave. This will help prevent bugs and make your code easier to read and maintain.

Problem Decomposition

  1. Problem Name:

    • What is the complex problem that you are trying to solve?
  2. Problem Understanding:

    • Can you explain the problem in your own words? What are the key components and requirements?
  3. Initial Breakdown:

    • Start by identifying the major parts or stages of the problem. How can you break the problem into several broad subproblems?
  4. Subproblem Refinement:

    • For each subproblem identified, ask yourself if it can be further broken down. What are the smaller tasks that need to be done to solve each subproblem?
  5. Task Identification:

    • Within these smaller tasks, are there any that are repeated or very similar? Could these be generalized into a single, reusable task?
  6. Task Abstraction:

    • For each task you’ve identified, is it abstracted enough to be clear and reusable, but still makes sense in the context of the problem?
  7. Method Naming:

    • Can you give each task a simple, descriptive name that makes its purpose clear?
  8. Subproblem Interactions:

    • How do these subproblems or tasks interact with each other? In what order do they need to be performed? Are there any dependencies?

By going through these steps for each complex problem, you can break it down into manageable parts, making it much easier to devise an effective solution.

From Brute Force to Optimal Solution

Could you please begin by illustrating a brute force solution for this problem? After detailing and discussing the inefficiencies of the brute force approach, could you then guide us through the process of optimizing this solution? Please explain each step towards optimization, discussing the reasoning behind each decision made, and how it improves upon the previous solution. Also, could you show how these optimizations impact the time and space complexity of our solution?

Code Explanation and Design Decisions

  1. Identify the initial parameters and explain their significance in the context of the problem statement or the solution domain.

  2. Discuss the primary loop or iteration over the input data. What does each iteration represent in terms of the problem you’re trying to solve? How does the iteration advance or contribute to the solution?

  3. If there are conditions or branches within the loop, what do these conditions signify? Explain the logical reasoning behind the branching in the context of the problem’s constraints or requirements.

  4. If there are updates or modifications to parameters within the loop, clarify why these changes are necessary. How do these modifications reflect changes in the state of the solution or the constraints of the problem?

  5. Describe any invariant that’s maintained throughout the code, and explain how it helps meet the problem’s constraints or objectives.

  6. Discuss the significance of the final output in relation to the problem statement or solution domain. What does it represent and how does it satisfy the problem’s requirements?

Remember, the focus here is not to explain what the code does on a syntactic level, but to communicate the intent and rationale behind the code in the context of the problem being solved.

Coding Constructs

Consider the following piece of complex software code.

  1. What are the high-level problem-solving strategies or techniques being used by this code?

  2. If you had to explain the purpose of this code to a non-programmer, what would you say?

  3. Can you identify the logical elements or constructs used in this code, independent of any programming language?

  4. Could you describe the algorithmic approach used by this code in plain English?

  5. What are the key steps or operations this code is performing on the input data, and why?

  6. Can you identify the algorithmic patterns or strategies used by this code, irrespective of the specific programming language syntax?

Language Agnostic Coding Drills

Your mission is to deconstruct this code into the smallest possible learning units, each corresponding to a separate coding concept. Consider these concepts as unique coding drills that can be individually implemented and later assembled into the final solution.

  1. Dissect the code and identify each distinct concept it contains. Remember, this process should be language-agnostic and generally applicable to most modern programming languages.

  2. Once you’ve identified these coding concepts or drills, list them out in order of increasing difficulty. Provide a brief description of each concept and why it is classified at its particular difficulty level.

  3. Next, describe the problem-solving approach that would lead from the problem statement to the final solution. Think about how each of these coding drills contributes to the overall solution. Elucidate the step-by-step process involved in using these drills to solve the problem. Please refrain from writing any actual code; we’re focusing on understanding the process and strategy.

Targeted Drills in Python

Now that you’ve identified and ordered the coding concepts from a complex software code in the previous exercise, let’s focus on creating Python-based coding drills for each of those concepts.

  1. Begin by writing a separate piece of Python code that encapsulates each identified concept. These individual drills should illustrate how to implement each concept in Python. Please ensure that these are suitable even for those with a basic understanding of Python.

  2. In addition to the general concepts, identify and write coding drills for any problem-specific concepts that might be needed to create a solution. Describe why these drills are essential for our problem.

  3. Once all drills have been coded, describe how these pieces can be integrated together in the right order to solve the initial problem. Each drill should contribute to building up to the final solution.

Remember, the goal is to not only to write these drills but also to ensure that they can be cohesively assembled into one comprehensive solution.

Q&A

What are the reasons for making these mistakes in the given code?

Similar Problems

Can you suggest 10 problems from LeetCode that require similar problem-solving strategies or use similar underlying concepts as the problem we’ve just solved? These problems can be from any domain or topic, but they should involve similar steps or techniques in the solution process. Also, please briefly explain why you consider each of these problems to be related to our original problem. “1782. Count Pairs Of Nodes” is a problem that involves concepts such as graph theory, degree of nodes, and working with frequency counts. Here are 10 problems of lesser complexity that can help you prepare for it:

  1. Number of Connected Components in an Undirected Graph: This problem introduces the basics of graph theory.

  2. Graph Valid Tree: This problem introduces the idea of verifying if a graph forms a valid tree.

  3. Number of Operations to Make Network Connected: This problem involves understanding the structure of a graph and finding how to connect all nodes.

  4. Find the Town Judge: This problem involves understanding the concept of in-degree and out-degree in a directed graph.

  5. Flower Planting With No Adjacent: This problem introduces the concept of graph coloring.

  6. Degree of an Array: This problem introduces the concept of degree in an array context.

  7. Intersection of Two Arrays II: This problem introduces the concept of frequency counting, which is crucial for solving “1782. Count Pairs Of Nodes”.

  8. Find Center of Star Graph: This problem is about finding a special node in a graph, which is the center node.

  9. Is Graph Bipartite?: This problem introduces the concept of graph bipartition.

  10. Number of Islands: This problem involves understanding the concept of connected components in a graph.

Working on these problems will give you a good understanding of the basic concepts needed to solve “1782. Count Pairs Of Nodes”.

Problem Classification

Problem Statement:You are given an undirected graph defined by an integer n, the number of nodes, and a 2D integer array edges, the edges in the graph, where edges[i] = [ui, vi] indicates that there is an undirected edge between ui and vi. You are also given an integer array queries.

Let incident(a, b) be defined as the number of edges that are connected to either node a or b.

The answer to the jth query is the number of pairs of nodes (a, b) that satisfy both of the following conditions:

a < b incident(a, b) > queries[j] Return an array answers such that answers.length == queries.length and answers[j] is the answer of the jth query.

Note that there can be multiple edges between the same two nodes.

Example 1:

Input: n = 4, edges = [[1,2],[2,4],[1,3],[2,3],[2,1]], queries = [2,3] Output: [6,5] Explanation: The calculations for incident(a, b) are shown in the table above. The answers for each of the queries are as follows:

  • answers[0] = 6. All the pairs have an incident(a, b) value greater than 2.
  • answers[1] = 5. All the pairs except (3, 4) have an incident(a, b) value greater than 3. Example 2:

Input: n = 5, edges = [[1,5],[1,5],[3,4],[2,5],[1,3],[5,1],[2,3],[2,5]], queries = [1,2,3,4,5] Output: [10,10,9,8,6]

Constraints:

2 <= n <= 2 * 104 1 <= edges.length <= 105 1 <= ui, vi <= n ui != vi 1 <= queries.length <= 20 0 <= queries[j] < edges.length

Analyze the provided problem statement. Categorize it based on its domain, ignoring ‘How’ it might be solved. Identify and list out the ‘What’ components. Based on these, further classify the problem. Explain your categorizations.

Visual Model of the Problem

How to visualize the problem statement for this problem?

Problem Restatement

Could you start by paraphrasing the problem statement in your own words? Try to distill the problem into its essential elements and make sure to clarify the requirements and constraints. This exercise should aid in understanding the problem better and aligning our thought process before jumping into solving it.

Abstract Representation of the Problem

Could you help me formulate an abstract representation of this problem?

Given this problem, how can we describe it in an abstract way that emphasizes the structure and key elements, without the specific real-world details?

Terminology

Are there any specialized terms, jargon, or technical concepts that are crucial to understanding this problem or solution? Could you define them and explain their role within the context of this problem?

Problem Simplification and Explanation

Could you please break down this problem into simpler terms? What are the key concepts involved and how do they interact? Can you also provide a metaphor or analogy to help me understand the problem better?

Constraints

Given the problem statement and the constraints provided, identify specific characteristics or conditions that can be exploited to our advantage in finding an efficient solution. Look for patterns or specific numerical ranges that could be useful in manipulating or interpreting the data.

What are the key insights from analyzing the constraints?

Case Analysis

Could you please provide additional examples or test cases that cover a wider range of the input space, including edge and boundary conditions? In doing so, could you also analyze each example to highlight different aspects of the problem, key constraints and potential pitfalls, as well as the reasoning behind the expected output for each case? This should help in generating key insights about the problem and ensuring the solution is robust and handles all possible scenarios.

Identification of Applicable Theoretical Concepts

Can you identify any mathematical or algorithmic concepts or properties that can be applied to simplify the problem or make it more manageable? Think about the nature of the operations or manipulations required by the problem statement. Are there existing theories, metrics, or methodologies in mathematics, computer science, or related fields that can be applied to calculate, measure, or perform these operations more effectively or efficiently?

Problem Breakdown and Solution Methodology

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Inference of Problem-Solving Approach from the Problem Statement

How did you infer from the problem statement that this problem can be solved using ?

Stepwise Refinement

  1. Could you please provide a stepwise refinement of our approach to solving this problem?

  2. How can we take the high-level solution approach and distill it into more granular, actionable steps?

  3. Could you identify any parts of the problem that can be solved independently?

  4. Are there any repeatable patterns within our solution?

Solution Approach and Analysis

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Thought Process

Explain the thought process by thinking step by step to solve this problem from the problem statement and code the final solution. Write code in Python3. What are the cues in the problem statement? What direction does it suggest in the approach to the problem? Generate insights about the problem statement.

From Brute Force to Optimal Solution

Could you please begin by illustrating a brute force solution for this problem? After detailing and discussing the inefficiencies of the brute force approach, could you then guide us through the process of optimizing this solution? Please explain each step towards optimization, discussing the reasoning behind each decision made, and how it improves upon the previous solution. Also, could you show how these optimizations impact the time and space complexity of our solution?

Coding Constructs

Consider the following piece of complex software code.

  1. What are the high-level problem-solving strategies or techniques being used by this code?

  2. If you had to explain the purpose of this code to a non-programmer, what would you say?

  3. Can you identify the logical elements or constructs used in this code, independent of any programming language?

  4. Could you describe the algorithmic approach used by this code in plain English?

  5. What are the key steps or operations this code is performing on the input data, and why?

  6. Can you identify the algorithmic patterns or strategies used by this code, irrespective of the specific programming language syntax?

Language Agnostic Coding Drills

Your mission is to deconstruct this code into the smallest possible learning units, each corresponding to a separate coding concept. Consider these concepts as unique coding drills that can be individually implemented and later assembled into the final solution.

  1. Dissect the code and identify each distinct concept it contains. Remember, this process should be language-agnostic and generally applicable to most modern programming languages.

  2. Once you’ve identified these coding concepts or drills, list them out in order of increasing difficulty. Provide a brief description of each concept and why it is classified at its particular difficulty level.

  3. Next, describe the problem-solving approach that would lead from the problem statement to the final solution. Think about how each of these coding drills contributes to the overall solution. Elucidate the step-by-step process involved in using these drills to solve the problem. Please refrain from writing any actual code; we’re focusing on understanding the process and strategy.

Targeted Drills in Python

Now that you’ve identified and ordered the coding concepts from a complex software code in the previous exercise, let’s focus on creating Python-based coding drills for each of those concepts.

  1. Begin by writing a separate piece of Python code that encapsulates each identified concept. These individual drills should illustrate how to implement each concept in Python. Please ensure that these are suitable even for those with a basic understanding of Python.

  2. In addition to the general concepts, identify and write coding drills for any problem-specific concepts that might be needed to create a solution. Describe why these drills are essential for our problem.

  3. Once all drills have been coded, describe how these pieces can be integrated together in the right order to solve the initial problem. Each drill should contribute to building up to the final solution.

Remember, the goal is to not only to write these drills but also to ensure that they can be cohesively assembled into one comprehensive solution.

Q&A

Similar Problems

Given the problem , identify and list down 10 similar problems on LeetCode. These should cover similar concepts or require similar problem-solving approaches as the provided problem. Please also give a brief reason as to why you think each problem is similar to the given problem.